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Two full dimensional (15 degrees-of-freedom) quantum calculations of vibrational energiegOgf ke
reported using the global potential energy surface (OSS) of Gjarnhal. §. Chem. Physl998 109, 5547).

One set of calculations uses the diffusion Monte Carlo (DMC) method with a highly flexible initial trial
wave function. This method is limited to the ground vibrational state, but produces what we believe is a
highly accurate, benchmark energy and wave function for that state. The DMC wave function is analyzed to
identify coordinates that are strongly correlated in zero-point fluctuations. A simple harmonic model is
developed to elucidate the energetic consequences of these correlations. The other set of calculations is based
on the code MULTIMODE, which does configuration interaction (Cl) calculations using a basis determined
from a vibrational self-consistent field (VSCF) Hamiltonian, but which uses a representation of the potential
with mode coupling limited to a maximum of four modes. Good agreement is obtained between the DMC
and the CI MULTIMODE energies for the ground vibrational state. When less sophisticated theoretical
treatments are applied, either variational Monte Carlo or vibrational self-consistent field, fairly large errors
are found. Vibrationally excited-state energies obtained with MULTIMODE are also reported.

I. Introduction staggered,g minimum13:3031or Cg minimum in which the
proton is bonded more closely to one oxygen atom than to the

i +
ca-tli-gﬁ pL(;tgngéeeivzﬁLersdJrgygr;Béf ’:i?:nzr;\?évr:aisé?i?nél;\?glegn dother; i.e., there is one covalent bond and one H-bond. Even in
’ J P high-level ab initio geometry optimizations, tl& transition

el st forover S0yt T s MOeed b s st COHO ~ 176 ~ 113 Ao = 1.0 A1 oy
P P P approximately 0.4 kcal/mol higher than tfg minimum§$10.16

aqueous solutions. For the ion formation reaction This suggests that, und€s symmetry, the competition between
N N covalent contributions and electrostatic tesfipole forces results
HO" + H,0 <= H:0, in rather a flat minimum on the potential energy surfaties32-34

A large number of HO,™ spectral studi€é& 42 have been done
experimental thermodynamics studi€shave reached excellent  in various condensed environments, such as zeolites, salts and
agreement with theoretical predictién® on binding energies,  acid solutions. Because of the highly delocalized cH&§eé143
~33 kcal/mol. The temperature dependence of the equilibrium and extra high polarizabilit}>44 the HO," ion has a
constant and rate constant have also been estimated in kineticgontinuou4®-42 and intens® absorption spectrum between 1000
studies>* and 3400 cm!. The gas-phase vibrational spectrum "

In the 1960s, X-ray diffraction exprimenfsdetermined is still far from complete. In 1989, Yeh and Okumura ef%%
HsO,™ as aC, structure in the hydrate crystal. Later, high-level reported band origins for the symmetric and asymmetric-OH
ab initio calculation®10121525 mainly confirmed that k5O," stretch modes at 3608.8 and 3684.4 ¢ntespectively.
has aC, minimum geometry in its electronic ground state: two ~ Numerous theoretical studies have been devoted to the
strong H-bonds connect the two terminaH,O equally, with calculation of ab initio harmonic, normal-mode frequen-
its O+++H*++-O backbone being slightly nonlineallQHO ~ cies89.12.17,19.24,30,3233 Fgwever, as pointed out in these studies,
17#, Re ~ 1.20 A)1® This differs from its isoelectronic ion,  especially the recent ones of Valeev and Schdéfére flat
NoH*, which is predicte®2° to be more stable with an  minimum and strongly anharmonic proton-transfer motion make
asymmetric NH" ---NHjz configuration. The earliest geometry  these harmonic predictions of limited value.
optimizations with modest basis sets foungQyi" to have a There have been a number of attempts to investigate the

P g hor E-mail b @euchae.ch g vibrational motion of HO," beyond the harmonic approxima-
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Figure 1. Local energy averagediyial/iuia Over 40000 walkers during a DMC calculation. Branching caused the number of walkers to fluctuate.
The total remained close to 40 000 during the run. The trial wave function used in the calculation of panel a was not as high-quality as that of panel
b, which, as depicted here, results in greater statistical errors in the estimation of the ground-state energy. (The trial wave function us¢el to gener
the data of panel a lacked tlg and vy, functions of eq 2 and also lacked the bottom three coupling terms in Table 2. Furthetgeoees taken

to be a function ofz, notZ2 as in eq 2.)

two-mode representation of the potential, the accuracy of which was pointed out nearly 10 years ago; however, a search for
was not tested. Both calculations reported significant red-shifted possible splittings in a high-resolution spectrum was inconclu-
deviations from corresponding harmonic normal mode energies. sive 33

An accurate, full-dimensional treatment of the vibrations of  In this paper we report two efforts to obtain vibrational
HsO," is quite challenging, even beyond the challenge of the energies of HO," in full dimensionality. The first method we
high dimensionality, owing to a large degree of “floppiness” . apply is the diffusion quantum Monte Carlo (DMC) metcP®
A careful analysis of several possible internal low-energy This method is applied only to the ground vibrational state,
rearrangements has been reported recently by Wal€ke where in principle, it can provide the exact energy (the zero-
calculated barrier heights of these internal motions are low point energy) and wave function. The second method is a
enough &1 kcal/mol) to possibly produce observable splittings vibrational configuration interaction method using a basis
in the spectrum. (The existence of such low-energy pathwaysobtained from a vibrational self-consistent field (VSCF)
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Figure 2. Schematic depiction of #D," in its equilibrium geometry, indicating the labeling of the atoms used in Table 1.

TABLE 1: Coordinates Used for HsO,™ Guiding Function.

coordinate definition characterization
da [r2—r3 inner proton to oxygen stretch
dy [r1—r3 inner proton to oxygen stretch
R [ri—r2 oxygen-oxygen distance
z [r3—ral deviation of inner proton from oxygeroxygen axis
dow, [r1—r4 outer oxyger-hydrogen stretch
don, [r1—rg| outer oxygen-hydrogen stretch
dom, [r2 =15 outer oxygen-hydrogen stretch
do, [r2—r7| outer oxyger-hydrogen stretch
Ohr, [ra—rgl outer hydrogerrhydrogen distance, a water bend coordinate
Ohty [rs —r7] outer hydrogefrhydrogen distance, a water bend coordinate
Wa (rs —roy)(ra—r2) water molecule wag
on (rc=ra):(ra—ra) water molecule wag
Oap [{(ra—re)(rs—r7)}{|ra—rglirs — r7|}]2 torsional coordinate measuring alignment of outer waters
CH [{(ra—re)(rs—ra)}/{Ira—rel}]? torsional coordinate measuring alignment of waters with the direction by
which the central proton deviates from the oxygexygen bond
O [{(rs—=r7)+(rz3—ra)}/{Irs — r}1? torsional coordinate measuring alignment of waters with the direction by

which the central proton deviates from the oxygexygen bond

aThe definitions make use of several intermediate points: the midpoint of the oxpyggen bondra = (Y2)(r1 + r2) and the two midpoints
between outer hydrogen pairs, = (2)(r4 + re) andrc = (M2)(rs + r7).

calculation®”-59 For this calculation we use MULTIMODE, sampling based on a trial wave function, or guiding functfor?
version 4.6-%% denoted MM4.6. This is a general code that In principle, DMC will provide the true ground state energy
can be used to obtain vibrational energies of the ground andfor any choice of guiding function. In practice, especially for a
excited states of polyatomic molecules. The results from this large and floppy system such ag®", a good quality guiding
code are not exact, due to an approximate treatment of thefunction is needed to obtain highly accurate ground vibrational
potential. Thus, a comparison with the highly accurate DMC properties. Figure 1 shows the local enerd¥yial¥uial,
results for the zero-point energy provides a rigorous test of the averaged over the walkers at each step of a DMC calculation.
accuracy of MM4.6, at least for the ground vibrational state. The number of walkers fluctuated near 40 000 during these runs.
The potential energy surface we use belongs to the OSS1-3Figure 1 illustrates the sensitivity of results to the quality of
family of potentials54 One of the version 3 surfaces, denoted the guiding function chosen. We employ guiding functions,
as OSS3(p), was chosen. These surfaces were first reported ilescribed in detail below, that have been optimized in prior
Ojamze et al®in 1995, and they have been well developed for variational Monte Carlo (VMC) calculations. The trial function,
simulations of water clusters with excess protors(H3O),.6465 used to produce the plot in Figure 1a yields a VMC estimate of
To calculate vibrational spectra and to simulate proton-transfer the ground-state energy 1627 thabove the exact value. Our
reactions, the OSS analytical potential energy models werebest trial function produces a variational energy expectation
constructed in such a way that they can describe both thevalue that is 553 cmi above the true ground state. It is apparent
intramolecular interactions and the intermolecular interactions, that the guiding function makes an enormous difference in the
such as the interactions betweesCH and HO in HsO,". These fluctuations of the local energy, as depicted in Figure 1, and
surfaces were assembled from a large number of %P2 consequently in the statistical errors of our final result.
calculations using Gaussian92utilizing the cc-pVT2® basis Although functions as simple as a multidimensional Gaussian
set with diffuse basis functions on oxygen (aug-cc-pV¥Z).  haye been used for the trial wave functiGi* we chose a
An analytical expression was fit by a nonlinear least-squares re|atively complex and flexible form of the guiding function to
minimization to these ab initio energies. The potential functional gptain a precise estimate of the zero-point energy gDA4.

form contains two-body interactions, three-body interactions, other authors have noted that the choice of internal coordinates
and electrostatic contributiofi$lt is one of the most extensive,  gnd form of the trial wave function affects the quality of the

fuII-d?mension_aI surfages available for protqnated clus'ger ioNS. trial wave functior* The trial wave function was optimized
This paper is organized as follows: Section Il describes the o the 0SS3 modet® but we expect that this form can also
DMC calculation details, analysis and results. The theoretical o applied to more accurate potential energy surfaces405H
bgckgrqund and varliationallscheme implemgnted in MM4.6 is as they become available. A simp@satzfor the trial wave
simply introduced in section lll, along with results and = ¢,nction, such as a Gaussian, simplifies the calculation of the
comparison with the DMC calculations. A summary and |oc5| energy. When the trial function is more flexible, calculation
discussion of the results are given in section IV. of analytic expressions for the local energy and quantum force,
VIn|yial?, becomes exceedingly complex. To handle this
difficulty, a symbolic algebra prografh is employed to
Computational Details. The efficiency of diffusion Monte automatically generate FORTRAN code to calculate the local
Carlo (DMC) calculations is usually enhanced by importance energy and quantum force. The trial wave function used in

Il. Diffusion Monte Carlo Calculation
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TABLE 2: Coupling Terms Used for HsO,™ Guiding Function

term characterization
ou[(don, — a2)(dun, — @3) + (dom, — 02)(Ahn, — ot3) + (dony — A2)(un, — o) + OH—HH coupling
(dow, — 02)(dh, — 03)]
04(da — dp)’(R— 0ts) R, central proton stretch coupling
0(0a — db)(dn, + Ohe, — 20t3) water HH, central proton stretch coupling
07(da — dp)(wa + wp — 208) wag, central proton stretch coupling
ag(R — as)(dow, + dow, + dom; + dow, — 4a) R, OH coupling
o10(R — as)(wa + wp — 208) water wag R coupling
oa[(dh — 02 (ds — o) + (d2 — 0t2)(ds — 042)] hydronium bending coupling
(don, — cag)[0ua(th — at12) + aus(ds — o2)] + (dom, — oug)[as(di — ot1z) + OH, hydronium bending coupling

a14(dz — 012)] + (dom; — cuz)[aaa(dz — 0t1g) + aas(ds — 012)] +
(don, — auz)[oas(dz — 0t2) + oaa(ds — 0u2)]
(da — aue)(d1 + ds — 20112) + (b — at16)(d2 + ds — 20112) central proton stretch, hydronium bending coupling

Figure 1b required 7572 lines of code automatically generated  ; (cp, 1)
by the symbolic algebra program after input of the analytic form
of the guiding function.

Our labeling scheme for 4@, in its C, equilibrium geometry
is shown in Figure 2. The oxygens and central proton define

12228

12226

the yz plane. The outer hydroge'ns' do not lie in teplane. 12224 -

Although the OSS3 model permits interchange of the outer and

central hydrogen atoms, such rare events, which give rise to 12222 /}/ /{/

small tunnel splittings, were not allowed by our trial wave

function. Wale&® has reported that the barrier to this motion is 12220 A/

4555 cnt!, an order of magnitude larger than the barriers for

other inversion and internal rotational motions, all of which are |

allowed in our calculations. The trial wave function is expressed 03 ! = 2

in terms of the internal coordinates specified in Table 1. The T (au)

trial wave function is of the form Figure 3. Extrapolation of the DMC ground-state energy to zero

imaginary time step. We attempted to fit the data to both? andz

Yot e (1) and found that the linear fit gave the best representation of the data.

parameters ofjyia change significantly, the representation of
||1pma||2 by the sample of configurations deteriorates, and the
VMC energy estimate, even with reweightifigis no longer
meaningful. The simulated annealing metHéayith frequent

wheref is a sum of effective potentials, or Jastrow facttrs,
which depend on the coordinates defined in Table 1. The actual
form of the functionf used in our study is

4 updates of the sample frompyia|2, emerged as an effective
f=u,(d,) + vy(d) + 2R + v5(D) + S vy(doy) + procedure for variational optimization. Diffusion Monte Carlo
= ' was performed using a series of different imaginary time steps,
v5(dHHa) + U5(dHHb) + vg(w,) + vg(wp) + v4(O,) + with the optimized trial wave function of eq 1 as the guiding
4 function. The zero-point energy was obtained by— 0
04(0,) + v(0y) + S vg(d) + v (Irg — 14l) + extrapolation of the results as shown in Figure 3. Our estimate

of ZPE for the OSS3 potential model is 12 21870(6) cnr ™.
Statistical errors were estimated using the blocking method
described by Flyvbjerg and Petersén.

Analysis of the DMC Wave Function. Configurations
generated by DMC sampling are representative of the probability
d=|ris—r4 distribution,P = y4ia®, whered is the exact ground-state wave

(distances between central and outer hydrogens) function, disﬁnct from the desired average over the true wave
function weighted by|®|?. Methods to directly calculate

v1(Ifc — rgl) + coupling terms (2)

where

1=1,2,34, averages are availablbut require significant overhead. A
1,5 . convenient approximation to the desired averages, which is used

yi(%) = 5K (X, = %) 1=2 3 in this study, is to weight configurations by the distribution
1 1 2P — |9yiall” 4
%) = 3,06, = X002+ 3Li06, — X0)°+ ¥ial “)
1 5 04 - which is the true probability function up to ordér= ®© —

ZMj (X, —xy)" J<2 Yial (i.€., with errors entering at ordé?). This follows because
and the coupling terms are specified in Table 2. D = (i + 0)° = 2P — 9° iy + 0 (5)

A trial wave function with 34 parameters was optimized by
minimizing the energy in VMC calculations. The VMC energy The validity of the approximation in eq 4 depends on the quality
estimate depends on a sample of configurations representativeof the trial wave function. The flexible form of outyiy yields
of yyia. Optimization techniques, such as conjugate gradient, accurate averages, as evidenced by the factthaj|? itself is
which allow large changes in parameter values upon eachalready quite close to the approximation of eq 4, as confirmed
iteration proved to be unwieldy in this situation. When the in Figure 4.
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Figure 4. Probability distribution for deviation of the central proton
from the midpoint of the oxygenoxygen bond. The solid lines are
the probability, 2 — |ywial?, estimated using the importance sampling
function P = yyia® and the trial wave function. (See the discussion
following eq 4.) The dashed lines are the probabilities from the
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estimates confirms the accuracy of our trial wave function and
expression 4 for the probability.
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Figure 6. Joint probability distribution of the watewater torsion
angles. The angle; andw- are defined in terms of molecular bisectors,
the average of two oxygerhydrogen vectors for outer hydrogens bound
to the same oxygen. Them; andw, are the dihedral angles between
planes containing a molecular bisector and the oxygygen vector,

and a second plane containing the two oxygens and the middle
hydrogen. The maximum contours [small ellipsoids at roughi$(,

50) and (50,—-50)] are drawn where the probability has the value 2.7
x 1075, Succeeding contours are drawn at values lowered by increments
of 3 x 10°6.
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bond length fluctuations of the outer OH bonds. The average
don is slightly larger than the equilibrium value by 0.03 A.
Another noticeable feature of zero-point quantum effect is the
elongation of the distance between two water oxygens, as shown
in Figure 5. The arrow in Figure 5 designates the inter-oxygen
distance from the equilibrium structure.

In Figure 6, we plot the distribution of torsion angles of the

bond distance [r’{}

Figure 5. Distribution of inner ¢lor*, solid line) and outerdon, dashed
line) oxygen-hydrogen bond lengths and the oxygesxygen distance
(R) in the HO;" ion as it undergoes zero-point fluctuations.

Probability distributions for the deviation of the central proton
from the midpoint of the two molecular oxygens (Figure 4)
clearly show the strength of zero-point fluctuations at 0 K. The

two outer water molecules. The torsion angles are defined from
the molecular bisector of the waters to thexis established
by the deviation of the central proton from the midpoint of the

average deviation of the central proton in thelirection, oxygen-oxygen bond, the-axis indicated in Figure 2. The two
perpendicular to the inter-oxygen aXiS, is 0.17 A, in Comparison maxima of Figure 6 locate two local minima @ Symmetry

with a deviation of 0.073 A at the equilibrium structure. The on the potential surface that are mirror images of each other.
estimated standard deviation is 0.09 A, which is already more | ines of s|ope+1 in Figure 6 are lines of constanb — wj,

than 50% of the average distance itself. The width of the the torsion angle difference between the two waters. There is a
distribution in Figure 4 rather resembles that of path integral re|ative|y Strong tendency for the waters to be Separated by
simulations by Cheng et &. that explored the quantum ~411. Lines of slope-1 are lines of constant, + a1, which
fluctuations of the IO, ion at 150 K on the somewhat different  gescribes the average torsion angle of the waters relative to the
potential surface given by their ab initio molecular dynamics central hydrogen. This coupling is weak, but still evident in
methodology. This indicates that most of the fluctuations they Figure 6.

observed stem from zero-point motion, and agrees with their  |n their reduced dimensionality calculations, Vener et al.
analysis of the path integral imaginary time correlation function chose the oxygenoxygen distance and the three coordinates
which pointed to ground state dominance. While Cheng et al. for the central hydrogen for explicit calculati@Working in
found significant differences between classical and quantum an adiabatic approximation, their effective potential surface for
behavior at 150 K, Tuckerman et al., using similar path integral these four active coordinates is the full potential minimized over
methodology, found less striking difference between quantum a|| other coordinates except for the torsion angles, which are

and classical distributions at 300%.

Figure 5 depicts the distribution of inneddy™, solid line)
and outer @on, dashed line) oxygenhydrogen bond lengths.

constrained to have a fixed value ®f — w,. This approxima-
tion will be accurate in the opposing limits of either highly
restricted motion in this coordinate, or nearly free, motion. From

The standard deviation for fluctuations of the central proton Figure 6, it is evident that the behavior of the®3™ ion in our

along the oxygeroxygen axis is 0.13 A, much greater than

calculations lies somewhere between these two limits.
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Figure 7. Correlation coefficients, as defined in eq 6, with figures illustrating the nature of the coordinates involved.

Assessing the degree of coupling between internal coordinatestheir zero-order values\w, is given by

gives important information needed to benchmark more ap-
proximate treatments of the system and indicates which
couplings must be included. The full zero-point probability
distripution from DMC ca.lculations.allows identification of wherew; andw; are the frequencies that reducedpandw?,
coordinates whose zero-point fluctuations are strongly CorrelatEd'respectively, a%; — 0. !
Wg accumulated.normalizeoll correlation coefficients among pairs  gjnce the fractional shift in frequencies depends on the square
of internal coordinates, defined as of the correlation coefficient, it may seem that the correlations
identified in Figure 7 may have small effect. Howeve in
eq 8 is multiplied by a factor which tends to be rather large.
For example, if the splitting between the zero-order frequencies
is as small as 40% of their average, then a correlation coefficient
of magnitude 0.2 indicates that inclusion of the couplpavill
between two coordinatesandx. Some of the larger correlation  increase the frequency splitting by 50%. If the zero-order levels
coefficients are depicted in Figure 7. are even closer, then the shift will be even more dramatic.
To qualitatively interpret the importance of those correlations Hence, the correlation coefficients reported in Figure 7 indicate
on the estimation of vibrational frequencies in possible reduced Significant couplings among internal coordinates. _
dimensionality calculations, we studied the analogous situation ~ Several of the examples in Figure 7 have a clear physical
in a simplified model. We examine the correlation introduced Interpretation. The first example of correlation in Figure 7,

by the force constarl; between two harmonic coordinates in  POSitive correlation betweert, — dy| and R, captures the
the Hamiltonian tendency for HO,™ to behave like an asymmetric hydronitm

water pair (largeld, — dp|) when the two oxygens fluctuate
beyond their equilibrium separation (larg®. Moving down

the first column of Figure 7, the negative correlation between
the bend angle andd, reflects a related effect: As the central
hydrogen deviates from the midpoint of the oxygerxygen

It is an elementary exercise to express the frequencies and?0nd, the unit furthest from the central hydrogen behaves like
ground state wave function in terms of the parameters introduced@ Water molecule, while the rest of the molecule behaves like
in eq 7. The correlation coefficient introduced in eq 6 are HsO". Thisis reflected in a negative correlation betwgeand
extracted from the square of the wave function. We expand the da Since, for large values af, the bond angle approaches that

frequencies and moments to leading ordekjnand then use of water, Which. is smaller. than the bond angle ?n hydronium.
the moments;;, o anda; to eliminatek; and the masses from Strong zero-point fluctuations toward asymmetrigdi- H,O

the frequency. Finally, we can express the fractional shift in character also explain the overlap of thgy" anddon oxygen-
the frequencies in terms of the correlation coefficient and the hydrogen distances in Figure 5. When thegpi" ion is in an

asymmetric configuration, one of tilgy™ distances is expected
ian? = Kn — i to be comparable tdon. The last four examples in Figure 7
zero-order frequencies, = ”_1n n=i,. p OH- p g
2 wagging, torsion and bending angles isQ4*.

Awy = (0; — wio) — (0 — (Ujo) 9)

G = %~ 5005 — 5500 (6)

%% T — 0P — R0

Tom e  am a2 %kiixiz + %kijxiz Thxx (1)

indicate that strong correlations exist among the various

Awij 1 a)io + a)]p ®)
= C:
w? - a)l-o 2 a)io - a)]Q !

IIl. MULTIMODE Calculations

MULTIMODE is a general code which performs quantum
In the above equation, the total shift of the two levels from rovibrational energy calculations of polyatomic molecules. The
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code is based on the full Watson Hamiltonian, which is an exact TABLE 3: C, Symmetries and Harmonic Frequencies of 15
Hamiltonian for rovibrational motion, given in terms of mass- Normal Modes at the Global Minimum and the o
scaled normal mode&),.#283 The code has been described and SeE?nd-Order Saddle Point Used in MM4.6 Calculations (in
tested previousl§?%3 In recent applications to tunneling cem—)

splittings in NH; and H,O™, modifications of the methodology ref* global minimum  2nd-order saddle point
were made to accurately describe the delocalized motion in amode C,sym freq mode C;sym freq mode C;sym freq
multidimensional double we#-87” These modifications, which

ws A 241 1 A 178 1 B 198i
are briefly described below, were used in the present calcula- ;s B 296 2 B 182 B 82i
tions. A key feature of MULTIMODE that makes calculations w7 A 481 3 A 552 3 B 538
of fairly large molecules feasible is the representation of the @s g g‘% g i ggi ;‘ ﬁ 2‘7‘513
full N-'mode potential by an exact hierarchical series of mode- z;“ A 650 6 A 638 6 A 674
coupling terms: w1z B 794 7 B 87 7 B 877
" 2 w12 B 1505 8 B 1486 8 B 1471
V(Qy Q- QY = Y VIQ) + 5 Wi (QLQ) + o A 1596 9 A 1505 9 A 1512
. T w3 A 1746 10 A 1716 10 A 1701
w B 1787 11 B 1871 11 B 1881
Z\’ﬁi)(Qi'jSQk) +YVIQ Q Qe Q)+ wp B 3766 12 B 3700 12 B 3716
I i w2 A 3806 13 A 379 13 A 3813
) ) _ we B 3854 14 B 3883 14 B 3900
where theone-mode representatiaf the potential contains only w1 A 3868 15 A 3894 15 A 3912
Vi(l)(Q.i) terrTls, i.e., the potential along cuts of the nc_eraI aB-CCD(T)/TZ2P results, at the minimum, from ref 16.
coordinates; thetwo-mode representatiomf the potential
contains these terms plus thg?(Q;,Q)) terms where any pair )
of normal modes vary, etc. In the present calculations, for which
there are 15 modes, the series is truncated at the four-mode
representation. This representation of the potential makes the
dimensionality of integrals involving V at most four, for any . o : ‘
number of normal coordinates.
Eigenvalues and eigenfunctions of the Watson Hamiltonian o
are obtained using the “VCI” approach. All of these begin with /B
a vibrational self-consistent field (VSCF) Hamiltonian for the o
ground vibrational state. The ClI method, denoted VCI, uses the (a) Q
“virtual” orthonormal basis of eigenfunctions of the single VSCF
Hamiltonian for the ground state. The size of the VCI Hamil-
tonian matrix grows nonlinearly with the size of the molecule, \
and the numerical evaluation of the matrix elements can become
very time-consuming. Thus, numerical quadratures are done
using a reduced set of “potential optimized” quadratures, as
described in detail elsewhete. .
To use MULTIMODE, a reference stationary geometry, at Q-
which a normal-mode analysis is done, must be specified. For '
HsO,*, where large amplitude motion can occur, we chose for
the reference geometry a second-order saddle point with the
proton midway between the two O atoms and in a linear \
arrangement. During geometry optimization for the reference
point, all other degrees of freedom are allowed to vary freely
except the central proton which is fixed at the midpoint of O @/7
--O. This choice permits a description of the large amplitude
motion of the proton between the equivalent two minima of (b) Q2
Hs02", which correspond to the two maxima of the probability  Figure 8. Two imaginary vibrational modes at the second-order saddle
distribution observed in Figure 6. point, in which the G-+H---O fragment is linear. (a) Mod&;, the

The normal coordinates were obtained for this stationary point proton-transfer mode. (b) Modg, the central proton slightly oscillating
as well as for one of the minima. The harmonic frequencies Perpendicular to the &H--O fragment, coupled with terminalOH,
and C, symmetries are given in Table 3. These results are in "@tons:
very good agreement with those of Valeev and Schdéfas global minima discussed above. Along the 1-D potential cut of
depicted in Figure 8a, the imaginary mo@g describes the Qu, the barrier connecting the two local minima is quite small,
central proton transfer between two oxygens, which is coupled only 0.99 cnt!. The bottom of the potential curve along the
with the vibrations of the two kD fragments in BO"++-H,0O Q2 1-D cut is even flatter, and the barrier height is only 0.16
formation, as is clear from Figure 8a. The other imaginary mode cm™™. Figure 9 plots theQ;—Q, potential contour spanned
Q2, see Figure 8b, represents the proton oscillating along aaround the reference geometry, while all the other 13 modes
direction perpendicular to the -©H---O line and C, axis, are held fixed at zero. It clearly demonstrates the boxlike
accompanied by anticlockwise OH, rotations. Cuts of the  character of the potential in these two modes.
potential surface along each of the two imaginary modes reveal The potential at our reference geometry is 97.236°cm
a pair of minima on either side of the reference point. Minima relative to the global minima. This small value is another
along these one-dimensional cuts are not true local minima of indication that the proton motion, even in the ground vibrational
the potential surface, and, in particular, not the two equivalent state, will be delocalized over the two equivalent global minima.



Vibrational Energies of kD" J. Phys. Chem. A, Vol. 107, No. 37, 2008L49

50
1.5E4
40
1.4E4
30 1.3E4
1.2E4
20 '1.1E4
o o 10000
2 1p w 9000
©
= 8000
T o0
g 7000
5000
| 5000
©
E 4000
o -20
e 3000
2000
-30
1000
0

]
90 -75 B0 -45 -30 -15 0O 15 30 45 6O 75 90
Nomal Coordinate Cl2

Figure 9. Equipotential contour plot of the 4@, OSS3 potential (crt) in the normal mode®i(proton-transfer mode) arn@,(proton oscillating
mode) with all other modes held fixed at zero.

TABLE 4: Zero-Point Energies (in cm™1) Relative to the
Global Minimum for the Indicated VCI Basis
3MR-I  3MR-lIl 4MR-l 4MR-lIl 4MR-lll 4MR-IV

size of ClI 408 7304 6261 15593 25587 38540
matrices 408 7142 6240 15648 25894 37776

There would be no vibrational state splittings caused by the
central proton transfers.

In the MM4.6 calculations, new features specially designed
for the problems involving saddle poirs:8” have been utilized.

These new features have been described previéti&he.g., VSCFZPE 127750 12778.1 12769.4 12768.9 12768.9 12753.4
the numerical bases consist of symmetric or asymmetric VCIZPE  12403.3 12313.4 123425 12320.6 12312.7 12309.9
functions (with respect tQ; = Q, = 0) that span both minima. 2 The DMC zero-point energy is 12218.2(.6) cnT. One of the

Instead of taking direct cuts of the potential along each mode two CI matrices refers to A symmetry, and the other is for B symmetry.
with other modes held fixed at zero, the one-dimensional

potentials of mode®s, Qu, andQs were optimized with respect  3MR-II. The largest calculation, 4MR-1V, used number of basis
to Q. for each value ofQ;, j = 3-5, the potential was  functions of order 38540 (for A symmetry) and 37776 (for B
minimized with respect t@,. For strongly coupled modes, such  symmetry).

minimizations ensure better descriptions of the contracted basis Zero-Point Energy. The zero-point energies of s8,",
functions over large displacements. Accordingly, large bases calculated by MM4.6, are presented in Table 4 for various VCI
of primitive functions and large number of quadratures points bases. We also give the VSCF energies in that table. As seen,
are required. The numerical basis for the three modes wasthe VSCF results are roughly 500 chabove the accurate DMC
obtained using a relatively large primitive harmonic-oscillator result. (Recall, also that the best variational trial wave function
basis defined by the harmonic frequencies given in Table 3. has a similar error.) The VCI ZPE appears to be converging to

1
For modesQs, Q4 and Qs, seven numerical basis functions g_valutehof 1f2310 e, abmit 9.2 (t:;n I\Z/IiEJ(I)_\'II'eII\BIthDEMCI\/aIIUI'e.
were contracted from a primitive basis of 23 harmonic-oscillator .s'n:; a? ;ﬁ:relré%il??rr?fnryn;n it (?s important tocgectléran:%r:as
functions. For other modes, seven numerical basis functions’ glo nimum, 1t 1S 1mp . In
- . . . whether that minimum is contained in the NMR grids. We did
were contracted from 13 primitive harmonic-oscillator functions.

. . o . investigate this and determined that the global minimum is
Techniques used to determine optimized quadratures points hav%ontained in the three- and (therefore) the four-mode grids, but
been described elsewhé¥eSince there are 15 degrees of '

o o o not in the two-mode grids. Thus, this possible shortcoming of
freedom, an excitation-unlimited VCI is still far beyond our o choice of reference geometry does not appear to be of
computational capabilities, Hamiltonian matrices of different .qncern for three- and four-mode calculations.

sizes have been constructed and diagonalized so that the trend \ye also investigated using a minimum as the reference
between CI matrix size and vibrational state convergences couldgeometry. Large 4MR VCI were done with this choice, and
be established. Six VCI calculations are reported in the next the resulting ZPE is 12346 crh This result is slightly higher
section, using the same 1-D bases as mentioned above. Four ofhan the one obtained using the second-order saddle point as
them use a four-mode representation of the potential, denotedthe reference geometry.

as 4MR-| through 4MR-IV. However, the other two VCI The MM zero-point energy appears to be fairly well
calculations used a 3-mode representation, denoted as 3MR-Iconverged with the respect to the level of mode-coupling;
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TABLE 5: Fundamentals of 15 Modes Calculated by
MM4.6 3MR and 4MR VCI, Related to Respective ZPEs,
Where 4MR-IV Values Are Taken as the Closest to
Converged (in cnr?)

mode 3MR-II AMR-IV
1 599 516
2 491 310
3 738 583
4 751 590
5 674 569
6 715 564
7 822 914
8 1529 1369
9 1530 1380
10 1832 1646
11 1747 1809
12 3422 3319
13 3650 3427
14 3527 3468
15 3544 3472

however, the 4MR ZPE is 90 cthabove the DMC result. This
raises the possibility that either a higher level of mode coupling
is needed or that the grid used in the MM calculations is not
sufficiently large. We plan to investigate both of these pos-
sibilities in the future, by doing 5MR calculations and also doing
MM calculations with a “Reaction Path Hamiltonian” (RPH)
as described elsewhet@®8 The RPH approach can in principle
describe vibrational motions on a potential with multiple
minima.

Vibrational Fundamentals. For each symmetry of Hamil-

tonian matrices, the eigenvectors for the 500 lowest vibrational
states were obtained along with their corresponding eigenvalues.

Huang et al.

wave function, including population profiles and correlations,
has been discussed. MULTIMODE vibrational self-consistent
field and configuration interaction calculations have been carried
out with a consistent set of increasing Hamiltonian bases for
three and four-mode coupling. The agreement between the DMC
ZPE and MM4.6 Cl ZPEs is good, especially considering the
difficulties posed by this weakly bonded cation. Fundamental
vibrational frequencies obtained from MULTIMODE have been
reported as several levels of approximation, and convergence
trends have been discussed.
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